Tag Archives: Graph Theory

Ryser’s conjecture

I am on a research visit in Rome, working with Valentina Pepe, and our joint paper on Ryser’s conjecture is on arXiv now. So this seems like the right time to talk about the conjecture and the problems related to … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry | Tagged , , , , , , , , | 1 Comment

Wenger graphs

A central (and foundational) question in extremal graph theory is the forbidden subgraph problem of Turán, which asks for the largest number of edges in an -vertex graph that does not contain any copy of a given graph as its … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry | Tagged , , , , , , , | Leave a comment

The cage problem and generalized polygons (part 1)

This post is a continuation of my previous post on the cage problem. Just to recall the main problem, for any given integers and , we want to find the least number of vertices in a simple undirected graph which … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry, Spectral Graph Theory | Tagged , , , , | Leave a comment

The Cage Problem

I recently finished my research visit to UWA where I worked with John Bamberg and Gordon Royle on some finite geometrical problems related to cages. So this seems like the right time for me to write a blog post about … Continue reading

Posted in Combinatorics, Finite Geometry | Tagged , , , , , | 2 Comments

Expander Mixing Lemma in Finite Geometry

In this post I will discuss some nice applications of the expander mixing lemma in finite incidence geometry, including a new result that I have obtained recently. In many of the applications of the lemma in finite geometry, the graph is bipartite, and … Continue reading

Posted in Combinatorics, Finite Geometry, Incidence Geometry, Spectral Graph Theory | Tagged , , , , | 2 Comments

A note on the Hall-Janko near octagon

I recently found out via some computations in my research work that the Hall-Janko near octagon contains suboctagons isomorphic to the generalized octagon of order . I couldn’t find it mentioned anywhere in the literature but it seemed like something … Continue reading

Posted in Combinatorics, Finite Geometry | Tagged , , | Leave a comment

Strongly regular graphs

A graph is called regular if its every vertex has the same number of neighbours. For example, this is a regular graph where each vertex has exactly three neighbours: It is the well known Petersen graph which is so important and popular in graph … Continue reading

Posted in Combinatorics | Tagged | 3 Comments