Tag Archives: combinatorics

A short video on Ramsey numbers

I was recently involved in making a 1 minute maths video for a contest organised by Veritasium. Here is the main requirement for the video We are looking for videos that clearly and creatively explain complex or counterintuitive concepts in … Continue reading

Posted in Combinatorics, Ramsey Theory | Tagged , , , , , | Leave a comment

A postdoc position at TU Delft

I would like to advertise a 3 year postdoc position at my research group. Please apply if you are interested in the kind of research that Dion and I do (https://anuragbishnoi.wordpress.com/publications/). The deadline is April 15 2021. Here are some … Continue reading

Posted in Job openings | Tagged , , , , | Leave a comment

The dual version of Ryser’s conjecture

I talked about our new results related to Ryser’s conjecture in a previous post (also see an even earlier post). The conjecture, and its variants, have some interesting equivalent formulations in terms of edge colourings of graphs. While I was … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Uncategorized | Tagged , , , , , , , , , , | Leave a comment

Bounds on Ramsey numbers from finite geometry

In an earlier post I talked about the work of Mubayi and Verstraete on determining the off-diagonal Ramsey numbers via certain optimal pseudorandom graphs, which are not yet known to exist except for the case of triangles. Beyond this conditional … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry, Ramsey Theory | Tagged , , , , , , , , | 3 Comments

Ryser’s conjecture

I am on a research visit in Rome, working with Valentina Pepe, and our joint paper on Ryser’s conjecture is on arXiv now. So this seems like the right time to talk about the conjecture and the problems related to … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry | Tagged , , , , , , , , | 2 Comments

Wenger graphs

A central (and foundational) question in extremal graph theory is the forbidden subgraph problem of Turán, which asks for the largest number of edges in an -vertex graph that does not contain any copy of a given graph as its … Continue reading

Posted in Combinatorics, Extremal Combinatorics, Finite Geometry, Incidence Geometry | Tagged , , , , , , , | 2 Comments

The footprint bound

Studying the set of common zeros of systems of polynomial equations is a fundamental problem in algebra and geometry. In this post we will look at estimating the cardinality of the set of common zeros, when we already know that … Continue reading

Posted in Coding Theory, Combinatorics, Polynomial Method | Tagged , , , , , , , | 1 Comment

Introduction to polynomial method

(The following is a blog-friendly version of Chapter 7 of my PhD thesis, which is an introduction to the so-called polynomial method.) The polynomial method is an umbrella term for different techniques involving polynomials which have been used to solve … Continue reading

Posted in Combinatorics, Incidence Geometry, Polynomial Method | Tagged , , , , | 2 Comments

What I have learned in finite geometry

On September 2nd, 2014 I wrote a blog post titled learning finite geometry, in which I described how much I have learned in my first year of PhD and more importantly, the topics that I wish to learn while I … Continue reading

Posted in Combinatorics, Finite Geometry, Incidence Geometry, Research Diary | Tagged , , , , , , | Leave a comment

Expander Mixing Lemma in Finite Geometry

In this post I will discuss some nice applications of the expander mixing lemma in finite incidence geometry, including a new result that I have obtained recently. In many of the applications of the lemma in finite geometry, the graph is bipartite, and … Continue reading

Posted in Combinatorics, Finite Geometry, Incidence Geometry, Spectral Graph Theory | Tagged , , , , | 3 Comments