Tag Archives: blocking set

What I have learned in finite geometry

On September 2nd, 2014 I wrote a blog post titled learning finite geometry, in which I described how much I have learned in my first year of PhD and more importantly, the topics that I wish to learn while I … Continue reading

Posted in Combinatorics, Finite Geometry, Incidence Geometry, Research Diary | Tagged , , , , , , | Leave a comment

Expander Mixing Lemma in Finite Geometry

In this post I will discuss some nice applications of the expander mixing lemma in finite incidence geometry, including a new result that I have obtained recently. In many of the applications of the lemma in finite geometry, the graph is bipartite, and … Continue reading

Posted in Combinatorics, Finite Geometry, Incidence Geometry, Spectral Graph Theory | Tagged , , , , | 2 Comments

Applications of Alon-Furedi to finite geometry

In a previous post I discussed how the Alon-Furedi theorem serves as a common generalisation of the results of Schwartz, DeMillo, Lipton and Zippel. Here I will show some nice applications of this theorem to finite geometry (reference: Section 6 of my … Continue reading

Posted in Combinatorics, Finite Geometry, Polynomial Method | Tagged , , | Leave a comment